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Introduction

• Emerging Non-Volatile Memory (NVM)

• Persistency as disk

• Byte addressability as DRAM

• Current file systems for NVM

• PMFS, SCMFS, BPFS

• Non-versioning, unable to recover old data

• Hardware and software errors

• Large dataset and long execution time

• Fault tolerance mechanism is needed

• Current versioning file systems

• BTRFS, NILFS2

• Not optimized for NVM



Design Goals

• Strong consistency

• A Stratified File System Tree (SFST) represents the snapshot of whole file system

• Atomic snapshotting is ensured

• Fast recovery

• Almost no redo or undo overhead in recovery

• High performance

• Utilize the byte-addressability of NVM to update the tree metadata at the granularity of bytes

• Log-structured updates to files balance the endurance of NVM

• Avoid write amplification

• User friendly

• Snapshots are created automatically and transparently



Overview

• HMVFS is an NVM-friendly log-structured versioning file system

• Space-efficient file system snapshotting

• HMVFS decouples tree metadata from tree data

• High performance and consistency guarantee

• POSIX compliant
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On-Memory Layout

• DRAM: cache and journal

• Sequential write zone

• File metadata and data

• Tree data

• Random write zone

• File system metadata

• Tree metadata

• NVM:
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in traditional Log-structured File Systems

• Update propagation problem
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Index Structure without write amplification

• Node Address Table
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Index Structure for versioning

• Node Address Table with the dimension of version.
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How to store different trees space-efficiently 

• Node Address Tree (NAT)

• A four-level B-tree to store multi-version Node Address 

Table space-efficiently

• Adopt the idea of CoW friendly B-tree

• NAT leaves contain NodeID-address pairs

• Other tree blocks in NAT contain pointers to lower level 

blocks.

Node

NAT 
root

NAT 
internal

NAT 
internal

…

NAT 
leaf

NAT 
leaf

……
NAT 
leaf

…

Indirect 
node

NAT 
internal

NAT 
internal

…
NAT 

internal
…

NAT 
root

NAT 
internal

NAT 
internal

NAT 
leaf

Direct 
node

Inode
Direct 
node

Node Address Tree

P,1

A,1 B,1 C,1 D,1

E,1 F,1

P,1

A,1 B,1 C,2 D,1

E,2 F,1

Q,1

D',1

F',1

P,0

A,1 B,1 C,1 D,0

E,1 F,0

Q,1

D',1

F',1

Original New



Stratified File System Tree (SFST)

• Four different categories of blocks:

• Checkpoint layer

• Node Address Tree (NAT) layer

• Node layer 

• Data layer

• All blocks from SFST are stored in the main area with 

log-structured writes

• Balance the endurance of NVM media

• Each SFST represents a valid snapshot of file system

• Share overlapped blocks to achieve space-efficiency
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Stratified File System Tree (SFST)

• The metadata of SFST

• In auxiliary information zone

• Random write updates

• Segment Information Table (SIT)

• Contains the status information of every segment

• Block Information Table (BIT)

• Keeps the information of every block

• Update precisely at variable bytes granularity

• Contains:

• Start and end version number

• Block type

• Node ID

• Reference count
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Garbage Collection in HMVFS

• Move all the valid blocks in the victim segment to the current segment

• When finished, update SIT and create a snapshot

• Handle block sharing problem
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Block Information Table (BIT)

• Block sharing problem

• The corresponding pointer in the parent block must be updated if a new child block is 

written in the main area

• Node ID and block type

• Used to locate parent node

Type of the block Type of the parent Node ID

Checkpoint N/A N/A
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NAT leaf
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Direct
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Block Information Table (BIT)

• Start and end version number

• The first and last versions in which the block is valid

• Operations like write and delete set these two variables to the current version 

number

• Reference count

• The number of parent nodes which are linked to the block

• Update with lazy reference counting

• File level operations and snapshot level operations update the reference 

count

• If the count reaches zero, the block will become garbage



Snapshot Creation

• Strong consistency is guaranteed

• Flush dirty NAT entries from DRAM to form a new 

Node Address Tree

• Follow the bottom-up procedure

• Status information are stored in checkpoint block

• Space-efficient snapshot

• The atomicity of snapshot creation is ensured

• Atomic update to the pointer in superblock to announce 

the validity of the new snapshot

• Crash during snapshot creation can be recovered by 

undo or redo depend on the validity
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Snapshot Deletion

• Deletion starts from the checkpoint block

• Checkpoint cache is stored in DRAM

• Follows the top-down procedure to decrease reference counts

• Consistency is ensured by journaling

• Call garbage collection afterwards

• Many reference counts have decreased to zero
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Crash Recovery

• Mount the writable last completed snapshot

• No additional recovery overhead

• Mount the read-only old snapshots

• Locate the checkpoint block of the snapshot

• Retrieve files via SFST
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Evaluation

• Experimental Setup

• A commodity server with 64 Intel Xeon 2GHz processors and 512GB DRAM

• Performance comparison with PMFS, EXT4, BTRFS, NILFS2

• Postmark results

• Different read bias numbers
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Evaluation

• Filebench results

• Fileserver

• Different numbers of files
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Evaluation

• Filebench results

• Varmail

• Different depths of directories 
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Conclusion

• HMVFS is the first file system to solve the consistency problem for NVM-based 

in-memory file systems using snapshotting.

• Metadata of the Stratified File System Tree (SFST) is decoupled from data and is 

updated at byte granularity

• HMVFS stores the snapshots space-efficiently with shared blocks in SFST and 

handles write amplification problem and block sharing problem well

• HMVFS exploits the structural benefit of CoW friendly B-tree and the byte-

addressability of NVM to automatically take frequent snapshots

• HMVFS outperforms tradition versioning file systems in snapshotting and 

performance while providing strong consistency guarantee and having little 

impact on foreground operations
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